Complex Bounds for Critical Circle Maps
نویسنده
چکیده
October 1995 Abstract. We use the methods developed with M. Lyubich for proving complex bounds for real quadratics to extend E. De Faria’s complex a priori bounds to all critical circle maps with an irrational rotation number. The contracting property for renormalizations of critical circle maps follows. In the Appendix we give an application of the complex bounds for proving local connectivity of some Julia sets.
منابع مشابه
Complex Bounds for Renormalization of Critical Circle Maps
We use the methods developed with M. Lyubich for proving complex bounds for real quadratics to extend E. De Faria's complex a priori bounds to all critical circle maps with an irrational rotation number. The contracting property for renormalizations of critical circle maps follows. As another application of our methods we present a new proof of theorem of C. Pe-tersen on local connectivity of s...
متن کاملReal Bounds, Ergodicity and Negative Schwarzian for Multimodal Maps
Over the last 20 years, many of the most spectacular results in the field of dynamical systems dealt specifically with interval and circle maps (or perturbations and complex extensions of such maps). Primarily, this is because in the one-dimensional case, much better distortion control can be obtained than for general dynamical systems. However, many of these spectacular results were obtained s...
متن کاملBeau Bounds for Multicritical Circle Maps
Let f : S → S be a C homeomorphism without periodic points having a finite number of critical points of power-law type. In this paper we establish real a-priori bounds, on the geometry of orbits of f , which are beau in the sense of Sullivan, i.e. bounds that are asymptotically universal at small scales. The proof of the beau bounds presented here is an adaptation, to the multicritical setting,...
متن کاملPeriods of Periodic Points for Transitive Degree One Maps of the Circle with a Fixed Point
A map of a circle is a continuous function from the circle to itself. Such a map is transitive if there is a point with a dense orbit. For degree one transitive maps of the circle with a fixed point, we give all possible sets of periods and the best lower bounds for topological entropy in terms of the set of periods.
متن کاملHyperbolicity of Renormalization of Critical Circle Maps
The renormalization theory of critical circle maps was developed in the late 1970’s–early 1980’s to explain the occurence of certain universality phenomena. These phenomena can be observed empirically in smooth families of circle homeomorphisms with one critical point, the so-called critical circle maps, and are analogous to Feigenbaum universality in the dynamics of unimodal maps. In the works...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995